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INTRODUCTION

It was observed by Cody et al. [2] that e-OO can be uniformly approximated
on [0, 00) by reciprocals of polynomials of degree n with the error en where
for e we may take 0.43501.. .. Besides, they showed that if '7Tn denotes the
collection of all real polynomials of degree at most n, and

Ao•n == inf I sup IrOO - ~() I!,
P"E1T" 10";",<00 Pn x I

then

lim (Ao•lI )l/n ?= l.
11->00

Later, it was proved by SchOnhage [5] that

Newman [4] investigated whether one could achieve better than a en error
by using general rational functions, and showed that one cannot. He in
fact proved the following
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THEOREM A. Let P(x), Q(x) be any polynomials of degree <no There
must be a point on the positive axis where

(1)

It has been commonly believed that the number 1280 appearing in (1)
is far from being the best possible. In our attempt to improve upon this
number we have been able to prove the following

THEOREM 1. Let P(x) and Q(x) be any polynomials of degree at most n.
Then

max Ie-X - P(x) I> 308-n.
x>O Q(x)

(2)

Our method of proof not only gives an improvement on Newman's
constant but can also be extended to a more general situation. We use it to
prove the following result which solves a problem raised by Erdos and
Reddy [3, Problem 4].

THEOREM 2. Let

00

j(z) = I, akzk,
k~O

be an entire function of order p (0 < P < (0) type T and lower type w
(0 < w ~ T < (0). Then there is a constant C > I such that for any poly­
nomials P(x) and Q(x) ofdegree at most n we have

In fact, if f!JJn denotes the class ofall polynomials of degree at most nand

. 1 I I P(x) IIAn.n(f) = mf sup je ) - Qe )
P.OEi?l'n ">0 X X

then

Here we have not even attempted to get a better bound.
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LEMMAS

In what follows we shall denote by Tn(x) the nth Chebyshev polynomial

Tn(x) = cos(n arc cos x).

First we recall a well-known estimate for polynomials with a given bound
on an interval.

LEMMA I. Let Pn(x) be a polynomial of degree at most n and [a, b] some
interval such that IPn(x)I :( I for all x E [a, b]. Then for every c > b we have

I Pn(c)/ :( Ti(2c - b - a)(b - a)).

This inequality may become quite crude, if IPix) Iactually has some curved
majorant on [a, b]. A more appropriate estimate in this case (but with c < a
instead of c > b) is given by the following

LEMMA 2. Let Pn(x) be a polynomial of degree at most n having a con­
tinuous positive majorant M(x) on some interval [a, b], i.e.,

IPn(x)I :( M(x)

Then for every c < a we have

for all x E [a, b].

where

I P (c) \ < 1. ex 1-1- f271 (1 - r
2) log M«(b - a)(2) cos 0 + (b + a)j2) dOl

n "" rn p 27T 0 1 + 2r cos 0 + r2 '

(3)

Proof Put

Then fez) is a holomorphic function,

and for all 0 E [0, 27T]

(
b-a b+a)If(e i9)! :( M -2- cos 0 +-2- (4)
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It is well known (see, for example, [1, p. 168]) that the Poisson integral H(z),
defined by

H(pe iqJ ) = _1_ f2" (1 - p2) log M«(b - a)/2) cos B+ (b + a)/2) dB
27T 0 1 - 2p cos(B - rp) + p2 '

is a harmonic function in the unit disk. Thus according to (4), H(z) is a
harmonic majorant of the subharmonic function log Ifez) I, and so

log 1 f( -r)1 = 10g{rn I Pn(c)l} :'( H(re;") ,

which completes the proof of Lemma 2.
In our applications the majorant M(x) will be a Chebyshev polynomial,

and the integral appearing on the right-hand side of (3) will be estimated with
the help of the following

LEMMA 3. Let c and d be positive numbers such that d - c > 1. Then,
for 0< r < 1,

_1_ f2" (l - r2) log Tn(c cos B+ d) dB s::: 1 T (d _ )
2 1 + 2 B+ 2 ~ og n rc .

7T 0 r cos r

Proof By our assumptions I cz + d 1 > 1 for 1 z I :'( 1. Hence Tn(cz + d)
does not vanish in the closed unit disk, and consequently,

fez) = log 1Tn(cz + d)1

defines there a harmonic function. By the Poisson formula we have

10 T (d _ rc) = _1_ f2" (l - r
2
) log I Tn(ce

i9 + d)1 dB.
g n 27T 0 1 + 2r cos B+ r2

Since the zeros of Tn(z) are all real

for all BE [0, 27T], and hence we have the desired result.
We shall also need the following trivial estimate for the nth Chebyshev

polynomial Tn(x).

LEMMA 4. For all real x such that 1 x I > 1, we have
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PROOFS OF THE THEOREMS

Proof of Theorem 1. Put f3 = log 308 = 5.7300997... , and let ex and y
be two numbers with

O<ex<f3<y

which we will choose later.
Assume now that Theorem 1 is false. Then there exist polynomials P(x)

and Q(x) of degree at most n such that

I
e-X - P(x) /1:::::: e-Bn

Q(x) '"

throughout the positive real axis. We may normalize Q(x) so that

max I Q(x) I = 1.
O~x~Q:n

Then at a point g = ng* E [0, exn] where I QWI = 1 we obtain

Let us now estimate IPWI from above. By (6) and Lemma 1 we get

(5)

(6)

(7)

(
2t - ex)I Q(nt)1 ~ Tn ex

Hence it follows from (5) that for t E [f3, y],

for t ~ ex.

(
2t - ex)I P(nt)1 ~ (e-nt + e-Bn) I Q(nt)1 ~ 2e-Bn Tn ex .

This inequality gives us a curved majorant of IP(x)I on the interval [nf3, ny].
With the notation

y + f3 - 2g*
W= f3y-

we obtain by Lemma 2

and r = W - (w2 - 1)1(2

\ p(el :::::: 2.- ex 1-1- J'217 (1 - r
2
) log M(O) dOl

'" rn p 27T 0 1 + 2r cos 0 + r2 '

where

M(O) = 2e-BnTn ( (y - (3) cos 0ex+ y + f3 - ex ).
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Using the estimate given in Lemma 3 it follows that

151

Finally, simplifying the right-hand side with the help of Lemma 4, we obtain

Now we compare the inequalities (7) and (8). If

then we must obviously have

Notice that r = r(g*) depends on g*. Differentiating

y + f3 - ex - r(g*)(y - (3)

(8)

(9)

with respect to e we find that this expression is a decreasing function of
g* in [0, ex] if the inequality

2 Y+ f3 - ex < I - ,\2 (y + f3 _ ex - ,\(y - (3)), (10)
y - f3 2'\

where

y+f3-2ex !(y+f3- 2ex )2 1
1/2,\ = r(ex) = - - I

y-f3 y-f3

is satisfied. Hence, subject to the condition that (10) holds we have

Now we set ex = 6(5, y = 30, and by a numberical calculation we obtain

0.4320446 < ,\ < 0.4320447,

ex'\elJ- a

2(y + f3 - ex - ,\(y - (3)) ~ 1.00014.
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Furthermore, we find that (10) is satisfied. Therefore,

This contradicts (9) if n ?: 3. But for n = 1, 2 (actually for I ~ n ~ 14)
calculations given in [2] show that even

max Ie-X - P(x) I > 15-n
x;;:'O Q(x)

This cimpletes the proof of Theorem I.

Proof of Theorem 2. Without loss of generality we may assume that
00 = 1. Now suppose that the theorem is false. Then, for a sufficiently small
E > 0 and infinitely many n there exist polynomials P(x) and Q(x) of degree
at most n for which

(II)

where

f:3 = 1.- + 2 1" + E + 2 log(l6 + 8(21 / 2)).
p2 W - E

Here we normalize Q(x) so that

max I Q(x1 /
p

) I = I.
O~x~n

(12)

Denoting by g = ng* E [0, n] a point where this maximum is attained we
find

According to the assumption of our theorem f(x1/ p
) may be represented

for x ?: 0 as

with

W = lim 8(x) ~ Iiiii 8(x) = T.
X~OO X-H;()

Consequently, for sufficiently large n we have

(13)

(14)

(15)
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Let us now estimate I p(e 1p)[ from above. Considering (12) we obtain
by Lemma I that

for t;?o 1.

Furthermore, by (II) we have

If n is large enough then, because of (13) and (14),

I nt
f«nt/(w _ E))l/p) < e- for t E [,8, y].

Hence taking all these inequalities into account, we get

for t E [,8, y].

Now we can deduce the desired estimate by using the Lemmas 2 and 3.
Putting

we obtain

and r = w - (w2 - 1)1/2

where

The right-hand side increases with decreasing values of r. Since t* E [0, I],
we obviously have

I I I y1/p - ,Bl/p
r = w + (w2 - 1)1/2 > 2w >"2 y1/p + ,Bl/p •

Replacing r in (16) by this lower bound and estimating TnO with the help
of Lemma 4, we get

! 2(y1/p + CIl/p)2 (l/p Q1/p)2In! ()InI P(gl/p)J < 2e-fl fJ - Y - fJ = e-flQ1/Pa L
y1/p - ,Bl/p fJ ,8'

(17)

h2 /
p + 6h1 /

p + 1
a(h) = 2 h1/p _ 1
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Now set y = fl(2(21 / 2) + 1)". On comparing (15) and (17) we see that if

then we must have

which is equivalent to

I T + €
fl < -log fl - log qn +--+ log(16 + 8(21 / 2». (18)

p w-€

But since log qn tends to zero as n --+ 00, the inequality

I 1 I I (T + € )\1/2-log fl - log qn < ~ (f1!/2) = 2: I + 2p2 + log(16 + 8(21/2)
P P P w-€

< J.- + T + € + log(16 + 8(21/2»
p2 w - €

holds for all sufficiently large n. Hence the right-hand side of (18) becomes
smaller than fl, a contradiction!
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